在大多数复杂的应用中,需要通过数据建立起一个数学模型,以便在实际应用中使用。要建立数学模型就要解决两个问题,首先是采用什么样的模型,其次是模型的参数是多少。从理论上讲,只要找到足够多的具有代表性的样本(数据),就可以运用数学找到一个模型或者一组模型的组合,使得它和真实情况非常接近。只要数据量足够,就可以用若干个简单的模型取代一个复杂的模型。这种方法被称为数据驱动方法,因为它是先有大量的数据,而不是预设的模型,然后用很多简单的模型去契合数据(FitData)。从某种程度上讲,获得和利用数据的水平反映出文明的水平。